Economía - Matemáticas y Estadística

Grado y Doble Grado. Curso 2018/2019.

MÉTODOS NUMÉRICOS - 900696

Curso Académico 2018-19

Datos Generales

SINOPSIS

COMPETENCIAS

Generales
Comprender y utilizar el lenguaje y las herramientas matemáticas para modelizar, simular y resolver problemas, reconociendo y
valorando las situaciones y problemas susceptibles de ser tratados matemáticamente. (CG1)
Conocer los modelos, métodos y técnicas relevantes en distintas áreas de aplicación de las matemáticas participando en la
creación de nuevas tecnologías que contribuyan al desarrollo de la sociedad. (CG2)
Asimilar la formulación de un nuevo objeto, modelo o método matemático, en términos de otros ya conocidos, y ser capaz de
utilizarlos en diferentes contextos de aplicación. (CG3)
Resolver problemas de Matemáticas, mediante habilidades de cálculo básico y otras técnicas. (CG4)
Comunicar, tanto por escrito como de forma oral, conocimientos, procedimientos, resultados e ideas matemáticas. (CG5)
Desarrollar la capacidad de identificar y describir matemáticamente un problema, estructurar la información disponible y
seleccionar un modelo adecuado. (CG6)
Específicas
Entender y saber implementar los distintos métodos de resolución de sistemas lineales, tanto directos como iterativos. (CE1)
Manejar las distintas factorizaciones de matrices. (CE1)
Saber decidir si un método iterativo es convergente. (CE1)
Seleccionar adecuadamente el tipo de método y el método que mejor se adapten al problema en
cuestión. Saber aplicar los distintos métodos a casos concretos. (CE2)
Calcular y dibujar los polinomios de interpolación y las funciones spline cúbicas interpoladoras de una función de una variable
real. Elegir adecuadamente las abscisas de interpolación y las condiciones en el borde. (CE1, CE2)
Aproximar el valor de integrales definidas. (CE1)
Aproximar, con una precisión determinada, las raíces de una ecuación no lineal (algebraica o no) eligiendo el método más
adecuado a la situación. (CE1, CE2)

ACTIVIDADES DOCENTES

Clases teóricas
Sesiones académicas teóricas: 1,2 ECTS presenciales + 1.2 ECTS de trabajo autónomo del estudiante
Clases prácticas
Sesiones académicas de problemas: 0,6 ECTS presenciales + 1.2 ECTS de trabajo autónomo del estudiante
Laboratorio de informática: 0,6 ECTS presenciales + 1.2 ECTS de trabajo autónomo del estudiante. Utilización del programa
Matlab o Freemat
Otras actividades
Tutorías
TOTAL
6 ECTS

Presenciales

2,6

No presenciales

3,4

Semestre

3

Breve descriptor:

 Se trata de iniciar al estudiante en las técnicas numéricas; en particular aquéllas que se utilizan para la resolución de problemas
en el ámbito del Álgebra Lineal, la interpolación de funciones de variable real, la derivación e integración numérica y la
aproximación de raíces.

Requisitos

Se recomiendan conocimientos básicos de álgebra lineal, análisis de una variable y rudimentos de programación.

Objetivos

1. Conocer los conceptos y resultados de la resolución aproximada de sistemas lineales, la interpolación, integración numérica y de
aproximación de ceros de funciones.
2. Aplicar los métodos de uso más extendido en la resolución de los problemas anteriormente mencionados.
3. Manejar herramientas informáticas en la que se pueden implementar dichos métodos (las prácticas se hacen con Matlab)

Contenido

 Aritmética en coma flotante. Errores.
Álgebra matricial
Métodos directos e iterativos de resolución de sistemas de ecuaciones lineales.
Interpolación polinómica y con splines. Diferenciación e integración numéricas.
Resolución de ecuaciones no lineales.

Evaluación

Exámenes finales: entre 70% y 85 % de la nota final
Controles evaluación continua: hasta el 15 % de la nota final
Realización de prácticas de ordenador: 15%
Observación: Los estudiantes que suspendan en la convocatoria ordinaria podrán presentarse al examen de la convocatoria extraordinaria, el cual supondrá entre un 70% y 85% de la calificación. El porcentaje restante será la calificación obtenida durante el curso mediante la resolución de problemas y la realización de prácticas. No se recogerán prácticas pasadas la fechas fijadas previamente por los profesores.

Bibliografía

1. A. Aubanell, A. Bensey y A. Delshams: Útiles básicos de Cálculo Numérico. Labor. 1993.
2. R. Burden y J. D. Faires: Análisis Numérico. 6ª edición. Thomson. 1998.
3. D. Hanselman y B. Littlefield, MATLAB edición del estudiante. Prentice Hall. 1996.
4. J. A. Infante y J. M. Rey: Métodos Numéricos. Teoría, problemas y prácticas con MATLAB. 5ª edición. Ediciones Pirámide. 2018.
5. D. Kincaid y W. Cheney: Análisis Numérico: las Matemáticas del Cálculo Científico. Addison-Wesley Iberoamericana. 1994.
6. J. H. Mathews y K. D. Fink: Métodos Numéricos con MATLAB. 3ª edición. Prentice Hall. 2004.

Bibliografía complementaria:
1. P. G. Ciarlet: Introduction à l'Analyse Numérique Matricielle et à l'optimization. Masson. 1982.
2. J. L. de la Fuente: Técnicas de cálculo para Sistemas de Ecuaciones, Programación Lineal y Entera. Reverté. 1998.
3. E. Isaacson y H. B. Keller: Analysis of Numerical Methods. Dover.1994.
4. P. Lascaux y R. Théodor: Analyse Numérique Matricielle Appliquée a l'Art de l'Ingénieur. Masson. 1987.
5. A. Quarteroni y F.Saleri. Cálculo científico con MATLAB y Octave. Springer. 2006.
6. L. N. Trefethen y D. Bau III: Numerical Linear Algebra. SIAM. 1997.

Otra información relevante

Se pondrá material del curso a disposición de los estudiantes a través del Campus Virtual de la UCM o bien a través de la página web del profesor/ profesora

Estructura

MódulosMaterias
No existen datos de módulos o materias para esta asignatura.

Grupos

Clases teóricas y/o prácticas
GrupoPeriodosHorariosAulaProfesor
Grupo único10/09/2018 - 20/12/2018MIÉRCOLES 11:00 - 12:00115JUAN ANTONIO INFANTE DEL RIO
MIÉRCOLES 12:00 - 13:00115JUAN ANTONIO INFANTE DEL RIO
JUEVES 12:00 - 13:00115JUAN ANTONIO INFANTE DEL RIO


Clases en aula informática
GrupoPeriodosHorariosAulaProfesor
Grupo U10/09/2018 - 20/12/2018VIERNES 12:00 - 13:00INF3JUAN ANTONIO INFANTE DEL RIO