Ingeniería Matemática

Grado y Doble Grado. Curso 2020/2021.

SIMULACIÓN NUMÉRICA - 800710

Curso Académico 2020-21

Datos Generales

SINOPSIS

COMPETENCIAS

Generales
Conocer los fundamentos prácticos de los métodos de diferencias finitas y elementos finitos. (CG3)
Implementar de forma efectiva el método de diferencias finitas en modelos sencillos. (CE2, CE5)
Conocer las técnicas que sirven para implementar el método de elementos finitos. (CG3, CE5)
Implementar dicho método para resolver problemas estacionarios y de evolución en dominios poligonales. (CE1, CE5) Manejar algunos paquetes de simulación numérica. (CE4, CE5)

ACTIVIDADES DOCENTES

Clases teóricas
Sesiones académicamente teóricas
Seminarios
Presentación de problemas/casos de estudio
Clases prácticas
Resolución de problemas
Laboratorios
Sesiones de programación en aula de informática
Otras actividades
Tutorías

Presenciales

6

No presenciales

2,4

Semestre

3,4

Breve descriptor:

Se trata de una primera asignatura sobre técnicas numéricas de resolución de problemas gobernados por ecuaciones en derivadas parciales. Se llevarán a cabo simulaciones numéricas tanto mediante programación autónoma como mediante la utilización de software profesional.

 

Requisitos

Se aconseja tener conocimientos de ecuaciones en derivadas parciales así como conocimientos del lenguaje de programación MATLAB .

Objetivos

Análisis e implementación de los métodos de Diferencias Finitas y de Elementos Finitos. Simulación numérica de los modelos

tratados. Uso de software profesional.

Contenido

 - El método de las Diferencias Finitas. Aplicación a problemas de contorno. - Implementación del método de Diferencias Finitas para la resolución de la ecuación de Poisson en dominios rectangulares. Métodos explícitos, implícitos y de Crank-Nicolson para la ecuación del calor en dimensión uno y en dominios rectangulares. La ecuación de ondas en dimensión uno y en dominios rectangulares. - Implementación del método de Elementos Finitos para modelos estacionarios elementales: Formulación variacional discreta. Funciones base. Matrices elementales. Ensamblado y resolución mediante métodos directos e iterativos. Introducción al uso de software profesional. Aplicaciones.

Evaluación

Evaluación continua: los alumnos deben hacer un seguimiento de las clases y de las tareas periódicas para entregar.
La nota final se obtiene a partir de:
Trabajos a desarrollar sobre un modelo específico: 30-60%
Examen final: 40-70%

Bibliografía

R. L. Burden, J. D. Faires y A. M. Burden. Análisis Numérico. 10a Ed. Cengage Learning Editores. 2017.
A. Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press. 1996.
C. Johnson. Numerical solution of partial differential equations by the finite element method. Cambridge University Press. 1992. D. Kincaid y W. Cheney. Análisis Numérico: las Matemáticas del Cálculo Científico. Addison-Wesley Iberoamericana. 1994.
R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM. 2007.
P. Quintela. Métodos Numéricos en Ingeniería. Tórculo. 2001.
A. M. Ramos. Introducción al análisis matemático del método de los elementos finitos. Editorial complutense. 2012.
J. C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Chapman and Hall/CRC. 1999.

Otra información relevante

Material de la asignatura disponible en el Campus Virtual de la UCM.

Estructura

MódulosMaterias
CONTENIDOS COMPLEMENTARIOSCONTENIDOS COMPLEMENTARIOS
TECNOMATEMATICASIMULACIÓN NUMÉRICA

Grupos

Clases teóricas
GrupoPeriodosHorariosAulaProfesor
Grupo único15/02/2021 - 28/05/2021LUNES 10:00 - 11:00114GERARDO ENRIQUE OLEAGA APADULA
MIÉRCOLES 10:00 - 11:00114GERARDO ENRIQUE OLEAGA APADULA


Clases prácticas
GrupoPeriodosHorariosAulaProfesor
Grupo único15/02/2021 - 28/05/2021MARTES 10:00 - 11:00INF1GERARDO ENRIQUE OLEAGA APADULA
JUEVES 10:00 - 11:00INF1GERARDO ENRIQUE OLEAGA APADULA