Matemáticas y Ciencia de Datos
Grado y Doble Grado. Curso 2024/2025.
MODELOS DE REGRESIÓN - 803959
Curso Académico 2024-25
Datos Generales
- Plan de estudios: 081F - GRADO EN MATEMÁTICAS Y CIENCIA DE DATOS (2022-23)
- Carácter: Obligatoria
- ECTS: 6.0
SINOPSIS
COMPETENCIAS
Generales
CG3 - Conocer los teoremas y modelos clásicos en distintas áreas de la Matemática y de la Estadística.
CG4 - Asimilar la definición de nuevos objetos matemático-estadísticos, en términos de otros ya conocidos, y ser capaz de utilizar
dichos objetos en diferentes contextos.
Transversales
la educación secundaria general, y alcanzando un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos
aspectos que implican conocimientos procedentes de la vanguardia de dicha área.
CT2 - Saber aplicar sus conocimientos a su trabajo o vocación de una forma profesional y que posean las competencias que suelen
demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro del área de la Estadística,
con base en las Matemáticas.
CT3 - Tener la capacidad de reunir e interpretar datos relevantes (dentro del área de la Estadística y las Matemáticas y de alguno de
sus campos de aplicación) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
CT5 - Haber desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de
autonomía.
Específicas
herramientas estadístico-matemáticas más adecuadas.
CE2 - Resolver problemas de Estadística mediante herramientas matemáticas e informáticas.
CE3 - Utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, visualización gráfica, optimización u
otras para resolver problemas estadísticos.
ACTIVIDADES DOCENTES
Clases teóricas
Clases prácticas
Laboratorios
Otras actividades
Trabajos tutorizados por el profesor. Exposición de trabajos complementarios.
TOTAL
Presenciales
No presenciales
Semestre
Breve descriptor:
Herramientas y técnicas estadísticas e informáticas para la construcción de modelos de regresión que permitan analizar y plasmar de manera cuantitativa la relación entre una variable respuesta de interés y una o varias variables explicativas.
Requisitos
Objetivos
Presentación de modelos y técnicas en regresión.
Estudio de métodos descriptivos e inferenciales en regresión.
Conocimiento de técnicas de ajuste, diagnóstico y validación.
Uso del software R
Contenido
1. Modelo de regresión lineal simple y múltiple.
2. Diagnóstico y validación. Desviación de las hipótesis usuales.
3. Selección de variables. Criterios de comparación de modelos.
4. Regresión paramétrica no lineal.
5. Regresión con respuesta discreta: modelo logístico, modelo de Poisson, otros modelos.
6. Modelos lineales generalizados.
7. Regresión no paramétrica: Técnicas usuales. Selección del parámetro de suavizado.
8. Software estadístico aplicado al análisis de regresión.
Evaluación
Trabajos prácticos/prácticas en el Laboratorio: 30%.
Esta ponderación se mantiene tanto para la convocatoria ordinaria como para la extraordinaria.
Nota: El resultado del examen teórico-práctico sobre 10 debe ser superior a 4 para ser considerado en la calificación final.
Bibliografía
Chatterjee, S., Hadi, A. S. (2013) Regression Analysis by Example. 5th ed. Wiley
Bibliografía Complementaria:
Draper, Smith (1998). Applied regression analysis. Wiley
Sheater, S.J. (2009). A Modern Approach to Regression with R. Springer.
Weisberg, S. (2005). Applied Linear Regression. 3rd ed. Wiley.
Otra información relevante
Estructura
Módulos | Materias |
---|---|
No existen datos de módulos o materias para esta asignatura. |
Grupos
Clases teóricas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo único | 09/09/2024 - 13/12/2024 | LUNES 11:00 - 12:00 | B15 | JUAN TINGUARO RODRIGUEZ GONZALEZ |
LUNES 12:00 - 13:00 | B15 | JUAN TINGUARO RODRIGUEZ GONZALEZ |
Clases prácticas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo único | 09/09/2024 - 13/12/2024 | MARTES 11:00 - 12:00 | B15 | JUAN TINGUARO RODRIGUEZ GONZALEZ SONIA RUBIO HERRANZ |
MARTES 12:00 - 13:00 | INF4 Aula de Informática | JUAN TINGUARO RODRIGUEZ GONZALEZ SONIA RUBIO HERRANZ |