Ingeniería Matemática

Máster. Curso 2020/2021.

MODELOS ESTOCÁSTICOS EN LOGÍSTICA - 604344

Curso Académico 2020-21

Datos Generales

SINOPSIS

COMPETENCIAS

Generales
CG1, CG2, CG3, CG5, CG6, CG7.
Transversales
CT1, CT2
Específicas
CE1, CE2,CE3, CE4, CE5, CE6

ACTIVIDADES DOCENTES

Clases teóricas
0,8 ECTS
Clases prácticas
0,4 ECTS
Laboratorios
Uso libre de los alumnos, y uso en aula del programa GAMS y Excel
Otras actividades
TRABAJOS INDIVIDUALES Y EN GRUPOS: 1.8 ECTS
TOTAL
3 ECTS

Presenciales

1,2

No presenciales

1,8

Semestre

2

Breve descriptor:

De manera general, la logística es el conjunto de medios y métodos necesarios para llevar a cabo la organización de una empresa, o de un servicio, especialmente de distribución. En el contexto de una organización (empresarial, militar, humanitaria, etc.), la logística se encarga de la planificación y gestión de la adquisición, producción, transporte, almacenamiento y distribución de diversos bienes para un funcionamiento óptimo del sistema.

Un tratamiento matemático realista de estos sistemas logísticos ha de tener necesariamente en cuenta la incertidumbre asociada a los diversos factores implicados (la demanda o el beneficio de ciertos productos, el coste y el tiempo de servicio de materias primas u otros bienes, etc.). Por ello, es preciso contar con herramientas matemáticas que incorporen  la modelización de la incertidumbre y saber cómo tratarla a la hora de tomar decisiones.

Se presentarán modelos y métodos para tratar la incertidumbre derivada de la aleatoriedad u otras fuentes de forma general, así como modelos específicos para determinados problemas estocásticos (colas, fiabilidad…).

Requisitos

Haber cursado Modelos Determinísticos en Logística.

Objetivos

MODELIZAR Y RESOLVER PROBLEMAS LOGÍSTICOS CON INCERTIDUMBRE Y RIESGO.
PROGRAMAR MODELOS MATEMÁTICOS EN LOGÍSTICA CON INCERTIDUMBRE Y RIESGO

Contenido


1. Modelos de Decisión con incertidumbre y riesgo en Logística:
  1.1. Decisión con incertidumbre y riesgo. Programación estocástica
  1.2. Decisión con múltiples criterios
  1.3. Decisión con varios decisores en competencia: Teoría de Juegos
 
2. Gestión de líneas de espera

3. Fiabilidad y mantenimiento

Evaluación

40% ENTREGA DE PRÁCTICAS PROGRAMADAS EN GAMS Y MATLAB O EXCEL
60% EXAMEN (hace falta sacar un mínimo de un 4 para hacer ponderación)

Bibliografía

BIRGE, J. y LOUVEAUX, F. (1997). Introduction to Stochastic Programming. Springer.
French, S. (1986) Decision Theory: An introduction to the mathematics of rationality, Ellis Horwood, Chichester.
Anderson, D.R., Sweeney, D.J. and Williams, Th.A. (1999) Métodos cuantitativos para los negocios. Thomson-Paraninfo.
Hillier, F.S., Lieberman, G.J. (2001) Investigación de Operaciones. 7ª edición. McGraw Hill.
Taha, H.A. (1998) Investigación de operaciones. Una introducción. Prentice Hall.
Ríos-Insua, S., Mateos, A., Bielza, M.C. y Jiménez, A. (2004) Investigación Operativa. Modelos determinísticos y estocásticos. Centro de Estudios Ramón Areces
Romero, C. (1993). Teoría de la Decisión Multicriterio: Conceptos, Ténicas y Aplicaciones. Alianza Universidad.
Saaty, T.L. (1994) Fundamentals of Decision Making. RWS Publications

Otra información relevante

Material disponible en Campus Virtual: Notas, enunciados de problemas

Estructura

MódulosMaterias
No existen datos de módulos o materias para esta asignatura.

Grupos

Clases teóricas y/o prácticas
GrupoPeriodosHorariosAulaProfesor
Grupo Único16/04/2021 - 26/05/2021MARTES 19:00 - 21:00INF0BEGOÑA VITORIANO VILLANUEVA
JUAN TINGUARO RODRIGUEZ GONZALEZ
JUEVES 19:00 - 21:00INF0BEGOÑA VITORIANO VILLANUEVA
JUAN TINGUARO RODRIGUEZ GONZALEZ