Matemáticas Avanzadas
Máster. Curso 2024/2025.
ANÁLISIS REAL - 606508
Curso Académico 2024-25
Datos Generales
- Plan de estudios: 061L - MÁSTER UNIVERSITARIO EN MATEMÁTICAS AVANZADAS (2012-13)
- Carácter: COMPLEMENTO DE FORMACION
- ECTS: 6.0
SINOPSIS
COMPETENCIAS
Generales
- Comprender y manejar los conceptos y técnicas básicas del análisis real avanzado.
- Manejar las técnicas de la integración abstracta, incluyendo la diferenciación.
- Manejar los espacios funcionales L^{p} y su dualidad, así como los operadores integrales clásicos.
- Comprender y manejar los fundamentos de la teoría de los espacios de Hilbert.
- Conocer y manejar los resultados fundamentales de la teoría espectral de operadores compactos.
- Manejar las técnicas de la integración abstracta, incluyendo la diferenciación.
- Manejar los espacios funcionales L^{p} y su dualidad, así como los operadores integrales clásicos.
- Comprender y manejar los fundamentos de la teoría de los espacios de Hilbert.
- Conocer y manejar los resultados fundamentales de la teoría espectral de operadores compactos.
Transversales
Las materias de este curso son trasversales y tienen gran conexión con otras asignaturas que se imparten en el Grado de Matemáticas. Especialmente con las asignaturas de Análisis Funcional , Análisis Complejo, Ecuaciones en Derivadas Parciales y Procesos Estocásticos.
ACTIVIDADES DOCENTES
Clases teóricas
2 Sesiones de clase teórica donde se desarrolla la materia del curso.
Clases prácticas
2 Sesiones de resolución de ejercicios y problemas propuestos en clase previamente
Presentaciones
Presentación por parte de los alumnos de algunos temas de la asignatura.
Otras actividades
Tutorías. Exposición de ejercicios y problemas resueltos .
Presenciales
6
Semestre
2
Breve descriptor:
Se desarrolla un curso de Analisis Real avanzado, incluyendo: Repaso Integración de Lebesgue. Medidas absolutamente continuas y medidas mutuamente singulares. Teoremas de descomposicion de Hahn de medidas reales. Teorema de Radon-Nikodym. Aplicaciones. Esperanza condicional .Dualidad de los espacio Lp . Convergencia debil. Esperanza condicional. Operdores integrales clasicos. Derivación de medidas e integrales en R^{n}. Funciones maximales.Teorema de Lebesgue. Espacios de Hilbert. Teoría espectral de operadores compactos y simetricos en espacios de Hilbert. Aplicaciones.
Requisitos
Es muy recomendable haber cursado previamente la asignatura del grado de matemáticas "TEORIA DE LA MEDIDA", .
Objetivos
- Desarrollar los conceptos y técnicas básicas de la integración abstracta, incluyendo las medidas absolutamente continuas y la diferenciación.
- Estudiar los espacios funcionales L^{p} y su dualidad, así como los operadores integrales clásicos.
- Estudiar los fundamentos de la teoría de los espacios de Hilbert.
- Presentar la teoría espectral de operadores compactos simetricos en espacios de Hilbert.
Contenido
- Repaso de la integración de Lebesgue
- Medidas absolutamente continuas y medidas con signo. El Teorema de Radon-Nikodym. Aplicaciones. Esperanza condicional.
- Derivacion de medidas e integrals en R^{n}. Teorema de Lebesgue. Puntos de densidad. Función maximal de Hardy-Litlewood.
- Espacios L^{p}. Dualidad.Convergencia debil.
- Espacios de Hilbert. Bases Hilbertianas. Series de Fourier.
- Teoria espectral de operadores compactos y simetricos en espacios de Hilbert
Evaluación
Habrá un examen final de la asignatura, junto con una evaluación continua a lo largo del curso. La NOTA FINAL estará formada por:
- 70% Examen final.
- 30% Evaluación continua del curso (Resolucion hojas de problemas , presentaciones orales y escritas. Participación activa en el curso....)
- 70% Examen final.
- 30% Evaluación continua del curso (Resolucion hojas de problemas , presentaciones orales y escritas. Participación activa en el curso....)
Bibliografía
- BREZIS: Análisis Funcional. Alianza 1986
# COHN: Measure theory. Birkhausser 1992
- CAROTHERS : Real Analysis. Cambridge University Press 2000
-# FOLLAND: Real Analysis. Second edition , Wiley Interscience 1999
- RUDIN: Real and complex analysis. Tercera edición, McGraw-Hill 1988.
- STEIN y SHAKARCHI: Real Analysis, Princeton University Press, 2005
# COHN: Measure theory. Birkhausser 1992
- CAROTHERS : Real Analysis. Cambridge University Press 2000
-# FOLLAND: Real Analysis. Second edition , Wiley Interscience 1999
- RUDIN: Real and complex analysis. Tercera edición, McGraw-Hill 1988.
- STEIN y SHAKARCHI: Real Analysis, Princeton University Press, 2005
Estructura
Módulos | Materias |
---|---|
No existen datos de módulos o materias para esta asignatura. |
Grupos
Clases teóricas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo único | 20/01/2025 - 09/05/2025 | LUNES 11:00 - 12:00 | 113 | FRANCISCO LUIS HERNANDEZ RODRIGUEZ |
MARTES 10:00 - 11:00 | 113 | FRANCISCO LUIS HERNANDEZ RODRIGUEZ |
Clases prácticas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo único | 20/01/2025 - 09/05/2025 | LUNES 12:00 - 13:00 | 113 | FRANCISCO LUIS HERNANDEZ RODRIGUEZ |
JUEVES 12:00 - 13:00 | 113 | FRANCISCO LUIS HERNANDEZ RODRIGUEZ |